Simulating deformations of MR brain images for validation of atlas-based segmentation and registration algorithms.
نویسندگان
چکیده
Simulated deformations and images can act as the gold standard for evaluating various template-based image segmentation and registration algorithms. Traditional deformable simulation methods, such as the use of analytic deformation fields or the displacement of landmarks followed by some form of interpolation, are often unable to construct rich (complex) and/or realistic deformations of anatomical organs. This paper presents new methods aiming to automatically simulate realistic inter- and intra-individual deformations. The paper first describes a statistical approach to capturing inter-individual variability of high-deformation fields from a number of examples (training samples). In this approach, Wavelet-Packet Transform (WPT) of the training deformations and their Jacobians, in conjunction with a Markov random field (MRF) spatial regularization, are used to capture both coarse and fine characteristics of the training deformations in a statistical fashion. Simulated deformations can then be constructed by randomly sampling the resultant statistical distribution in an unconstrained or a landmark-constrained fashion. The paper also describes a model for generating tissue atrophy or growth in order to simulate intra-individual brain deformations. Several sets of simulated deformation fields and respective images are generated, which can be used in the future for systematic and extensive validation studies of automated atlas-based segmentation and deformable registration methods. The code and simulated data are available through our Web site.
منابع مشابه
Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملGenerating Synthetic Computed Tomography and Synthetic Magnetic Resonance (sMR: sT1w/sT2w) Images of the Brain Using Atlas-Based Method
Introduction: Nowadays, magnetic resonance imaging (MRI) in combination with computed-tomography (CT) is increasingly being used in radiation therapy planning. MR and CT images are applied to determine the target volume and calculate dose distribution, respectively. Since the use of these two imaging modalities causes registration uncertainty and increases department w...
متن کاملGenerating the synthetic CT (sCT) and synthetic MR (sMR: sT1w/sT2w) images of the brain using atlas based method
Introduction: Radiation therapy planning (RTP) is one of the clinical applications in which both CT scan and MRI are used. MR and CT images are applied to determine the target volume and calculation of dose distribution, respectively. In addition, using two imaging modalities increases the department workload and cost. In this study, an algorithm was presented to create synthet...
متن کاملAtlas Chordoma Neoplasm Image Based Modeling of Labeled Brain Tumor
The Image-based modeling of tumor growth combines methods from cancer simulation and medical imaging. In this context, we present a novel approach to adapt a healthy brain atlas to MR images of tumor patients. In order to establish the correspondence among a healthy atlas and a pathologic patient image, tumor growth modeling in combination with registration algorithms is employed. In a first st...
متن کاملAtlas-Based Segmentation and Tracking of 3D Cardiac MR Images Using Non-rigid Registration
We propose a novel method for fully automated segmentation and tracking of the myocardium and left and right ventricles (LV and RV) using 4D MR images. The method uses non-rigid registration to elastically deform a cardiac atlas built automatically from 14 normal subjects. The registration yields robust performance and is particularly suitable for processing a sequence of 3D images in a cardiac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 33 3 شماره
صفحات -
تاریخ انتشار 2006